openglcanvas.cpp 28.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
//--------------------------------------------------
// Panoramic is an interface for the visualization of panoramas capable of
// handling wide fields of view, based on Möbius transformations.
// Copyright (C) 2015 Luis Peñaranda, Luiz Velho and Leonardo Sacht.
// 
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
// 
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
// 
// You should have received a copy of the GNU General Public License along
// with this program.  If not, see <http://www.gnu.org/licenses/>.
//-------------------------------------------------- 

#include <QtGui>
#ifdef NEEDGLEE
  #include "GLee.h"
#endif
#include "openglcanvas.h"
#include <cmath>
#include <sys/types.h>  // for fstat, getpwuid, getuid
#include <sys/stat.h>   // for fstat
#ifdef _WIN32
  #include <stdlib.h>   // for getenv (TODO: use getenv_s)
#else
  #include <pwd.h>      // for getpwuid
#endif
#include <cstdio>       // for getc
#include <cstring>

#include "files.h"

#define VERT_SHADER_FILE "vertex_shader.vert"
#define FRAG_SHADER_FILE "fragment_shader.frag"

#define CONST_PI        3.141592653589793115997963468544185161590576171875
#define CONST_PI_2      1.5707963267948965579989817342720925807952880859375
#define CONST_PI_F      3.1415927410125732421875f
#define CONST_PI_2_F    1.57079637050628662109375f
//#define CONST_PI        (0x1.921fb54442d18p+1)
//#define CONST_PI_2      (0x1.921fb54442d18p+0)
//#define CONST_PI_F      (0x1.921fb6p+1f)
//#define CONST_PI_2_F    (0x1.921fb6p+0f)

#ifdef PANO_EXTENDED_CONTROLS
// These definitions specify which attributes should be used to store some
// parameters passed to the vertex shader. Nvidia hardware
// only leaves attributes 1 and 7 unreserved; attributes 8 to 15 are
// reserved for textures.
// TODO: we use attributes 14 and 15, which work for Nvidia; we need to
// test with other hardware.
#define PD_ATTR 13
#define ZBL_ATTR 14
#define ZBR_ATTR 15
#endif // PANO_EXTENDED_CONTROLS

OpenGLCanvas::OpenGLCanvas(QWidget *parent) :
    QGLWidget(parent)
{
    setFormat(QGL::DoubleBuffer | QGL::DepthBuffer);
    fov = 60.f;
    fov_max = 60.f; // TODO: I only use floats here because Leo did... check
    scale = 1.0f;
    center_lambda = 0.f;
    center_phi = 0.f;
    fov_scale_relation = "Simple";
    visualization = "Moebius";
    auto_fov_max=false;
    shrink_for_all=false;
#ifdef PANO_EXTENDED_CONTROLS
    pd=0.f; // Pannini projection d
    zblambda=.1f; // Zorin-Barr transformation lambda
    zbR=1.f; // Zorin-Barr transformation R
#endif // PANO_EXTENDED_CONTROLS

    time_frames = 0;
    time_timer.setInterval(0);
    connect(&time_timer, SIGNAL(timeout()), this, SLOT(slotTimer()));
    time_start = time_time.time();
}

void OpenGLCanvas::slotTimer(void) {
    updateGL();
}

void OpenGLCanvas::change_fov(double f){

    if (fov!=f && f>=1.f && f<=360.f)
        fov=f;
    compute_scale();
//    scale = 0.3f;

    fprintf(stderr,"change fov, fov=%f, fov_max=%f, scale=%f\n",fov,fov_max,scale);
    emit fov_changed((int)fov);

    updateGL();

}

void OpenGLCanvas::automaxbutton(bool autovalue){
    auto_fov_max=autovalue;
    change_fov_max(compute_auto_fov_max(fov));
}

void OpenGLCanvas::shrinkallbutton(bool shrinkvalue){
    shrink_for_all=shrinkvalue;
    compute_scale();
    updateGL();
}

void OpenGLCanvas::change_fov(int new_fov){
    if(new_fov<=360&&new_fov>=1){
        change_fov((double)new_fov);
        if(auto_fov_max)
            change_fov_max(compute_auto_fov_max(new_fov));
    }
}

void OpenGLCanvas::change_fov_max(int new_fov_max){
    if(new_fov_max<=360.f&&new_fov_max>=1)
            fov_max=(double)new_fov_max;
    compute_scale();
    fprintf(stderr,"change fov_max, fov=%f, fov_max=%f, new scale=%f\n",fov,fov_max,scale);
    emit max_fov_changed((int)fov_max);
    updateGL();
}

#ifdef PANO_EXTENDED_CONTROLS
void OpenGLCanvas::change_p_d(int new_p_d){
    pd=(float)new_p_d/10;
    fprintf(stderr,"p_d=%f\n",pd);
    glVertexAttrib1f(PD_ATTR,pd);
    updateGL();
}

void OpenGLCanvas::change_zb_lambda(int new_zb_lambda){
    zblambda=(float)new_zb_lambda/1000;
    fprintf(stderr,"zb_lambda=%f\n",zblambda);
    glVertexAttrib1f(ZBL_ATTR,zblambda);
    updateGL();
}

void OpenGLCanvas::change_zb_R(int new_zb_R){
    zbR=(float)new_zb_R/100;
    fprintf(stderr,"zb_R=%f\n",zbR);
    glVertexAttrib1f(ZBR_ATTR,zbR);
    updateGL();
}
#endif // PANO_EXTENDED_CONTROLS

//void OpenGLCanvas::change_scale(double s){

//    if (scale!=s && s>=0.0 && s<=1.0) scale = s;
//    updateGL();

//}

void OpenGLCanvas::change_center_lambda(double lambda){

    if (center_lambda!=lambda && lambda>=-CONST_PI_F && lambda<=CONST_PI_F) {
        center_lambda = lambda;
        updateGL();
    }

}

void OpenGLCanvas::change_center_phi(double phi){

    if (center_phi!=phi && phi>=-CONST_PI_2_F && phi<=CONST_PI_2_F) {
        center_phi = phi;
        updateGL();
    }

}

void OpenGLCanvas::re_center(){
    center_phi=.0f;
    center_lambda=.0f;
    updateGL();
}

void OpenGLCanvas::change_fov_scale_relation(QString name){

    fov_scale_relation = name;
    compute_scale();
    fprintf(stderr,"changed scale relation, scale=%f, fov_max=%f\n",scale,fov_max);
    updateGL();

}

void OpenGLCanvas::change_visualization(QString name){
    visualization=name;
    compute_scale();
    updateGL();
}

// This function reads the contents of the ~/.panorc file and stores the
// options in private variables.
void OpenGLCanvas::read_config_file(){
#ifdef _WIN32
    char* envvar=(char*)malloc(12*sizeof(char));
    strcpy(envvar,"USERPROFILE\0");
    char *filepath=(char*)malloc(512*sizeof(char));
    strcpy(filepath,getenv(envvar));
    free(envvar);
    strcat(filepath,"\\.panorc");
#else
    struct passwd *pw=getpwuid(getuid());
    char *filepath=pw->pw_dir;
    strcat(filepath,"/.panorc");
#endif
    shader_dir=(char*)malloc(512*sizeof(char));
    shader_dir[0]='\0';
    input_image_file=(char*)malloc(512*sizeof(char));
    input_image_file[0]='\0';
    input_image_dir=(char*)malloc(512*sizeof(char));
    input_image_dir[0]='\0';
    char *read_line=(char*)malloc(64*sizeof(char));
    struct stat testbuf;
    if(stat(filepath,&testbuf)){
        fprintf(stderr,"%s does not exist\n",filepath);
    }else{
        FILE *rcfile;
        FOPEN_RO(rcfile,filepath);
        char c;
        char *line=(char*)malloc(512*sizeof(char));
        while((c=getc(rcfile))!=EOF){
            while(c=='\n') // discard empty lines
                c=getc(rcfile);
            if(c==EOF)
                break;
            line[0]=c; // first char on the line was already read
            if(!fgets(line+1,511,rcfile)){
                fprintf(stderr,"error reading rcfile\n");
                exit(-1);
            }
            // check for 'shader_dir' option
            if(!strncmp(line,"shader_dir=",11)){
                strcpy(shader_dir,line+11);
                shader_dir[strlen(line)-12]='\0';
                fprintf(stderr,"shader_dir=%s\n",shader_dir);
            }
            // check for 'image_file' option
            if(!strncmp(line,"image_file=",11)){
                strcpy(input_image_file,line+11);
                input_image_file[strlen(line)-12]='\0';
                fprintf(stderr,"input_image_file=%s\n",input_image_file);
            }
            // check for 'image_dir' option
            if(!strncmp(line,"image_dir=",10)){
                strcpy(input_image_dir,line+10);
                input_image_dir[strlen(line)-11]='\0';
                fprintf(stderr,"input_image_dir=%s\n",input_image_dir);
            }
            // check for 'max_fov' option
            if(!strncmp(line,"max_fov=",8)){
                strcpy(read_line,line+8);
                read_line[strlen(line)-9]='\0';
                fov_max=atof(read_line);
                fprintf(stderr,"max_fov=%f\n",fov_max);
            }
            // check for 'fov' option
            if(!strncmp(line,"fov=",4)){
                strcpy(read_line,line+4);
                read_line[strlen(line)-5]='\0';
                fov=atof(read_line);
                fprintf(stderr,"fov=%f\n",fov);
            }
            // check for 'auto_max_fov' option
            if(!strncmp(line,"auto_max_fov=",13)){
                strcpy(read_line,line+13);
                read_line[strlen(line)-14]='\0';
                auto_fov_max=atof(read_line);
                fprintf(stderr,"auto_max_fov=%d\n",auto_fov_max);
            }
#ifdef PANO_EXTENDED_CONTROLS
            // check for the Pannini parameter, d
            if(!strncmp(line,"pd=",3)){
                strcpy(read_line,line+3);
                read_line[strlen(line)-4]='\0';
                pd=atof(read_line);
                fprintf(stderr,"pd=%f\n",pd);
            }
            // check for the Zorin-Barr transformation parameters, lambda and R
            if(!strncmp(line,"zblambda=",9)){
                strcpy(read_line,line+9);
                read_line[strlen(line)-10]='\0';
                zblambda=atof(read_line);
                fprintf(stderr,"zblambda=%f\n",zblambda);
            }
            if(!strncmp(line,"zbR=",4)){
                strcpy(read_line,line+4);
                read_line[strlen(line)-5]='\0';
                zbR=atof(read_line);
                fprintf(stderr,"zbR=%f\n",zbR);
            }
#endif // PANO_EXTENDED_CONTROLS
        }
        fclose(rcfile);
    }
#ifdef _WIN32
    free(filepath);
#endif
    emit fov_changed((int)fov);
    emit max_fov_changed((int)fov_max);
}

void OpenGLCanvas::load_image(const char *new_image){
    unsigned char *textureBytes=read_image(new_image,&image_size_x,&image_size_y);
    glPixelStorei(GL_UNPACK_ALIGNMENT,1);
    GLuint tex;
    glGenTextures(1,&tex);
    glBindTexture(GL_TEXTURE_2D,tex);
    glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D,
                 0,
                 GL_RGB,
                 image_size_x,
                 image_size_y,
                 0,
                 GL_RGB,
                 GL_UNSIGNED_BYTE,
                 textureBytes);
}

void OpenGLCanvas::change_input_image(){
        const char *fname=QFileDialog::getOpenFileName(this,tr("Choose Panorama File"),input_image_dir,FileRead::image_types).toStdString().c_str();
        if(strlen(fname)>0){
                load_image(fname);
                updateGL();
        }
}

void OpenGLCanvas::initializeGL(){
    glShadeModel(GL_SMOOTH);
    glClearColor(1.0f,1.0f,1.0f,0.0f);
    glClearDepth(1.0f);
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LEQUAL);
    glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST);

#ifndef _MSC_VER
#ifdef __APPLE__
    const char * const progname = "PROJ_ROOT_DIR";
#else
    // progname is a file name or a path???
    const char * const progname = (char*)(PROGNAME);
#endif
    fprintf(stderr,"progname=%s\n",progname);
#endif // MSC_VER

    read_config_file();
    compute_scale();
    // If the input file does not exist or was not specified.
    struct stat testbuf;
    if(stat(input_image_file,&testbuf)||!strcmp(input_image_file,"")){
        load_image(QFileDialog::getOpenFileName(this,tr("Choose Panorama File"),input_image_dir,FileRead::image_types).toStdString().c_str());
    }else{
        load_image(input_image_file);
    }
    free(input_image_file);

    // mesh resolution
    int m,n;
    m = n = 100;

    //defining texture coordinates
    int meshNumTexCoord = m*n;
    float *texCoord = (float *)malloc(2*meshNumTexCoord*sizeof(float));
    if (texCoord == NULL){
        printf("problem allocating memory for texture coordinates \n");
    }
    define_texture_coordinates(texCoord, m, n, -CONST_PI_2_F, CONST_PI_2_F, -CONST_PI_F, CONST_PI_F);

    //defining positions of the sphere vertices
    int meshNumVertices = m*n;
    float* positions = (float *)malloc(3*meshNumVertices*sizeof(float));
    if (positions == NULL){
        printf("problem allocating memory for positions \n");
    }
//    vertex_transformation(positions, m, n, center_lambda, center_phi, fov_rads, scale); //passar pelo vertex shader
    load_sphere_mesh(positions, m, n); //colocar essa e funcoes para textura e triangulos no initializeGL

    //defining triagle indices
    unsigned int meshNumFaces = 2*(m-1)*(n-1);
    unsigned int meshNumIndices = 3*meshNumFaces;
    unsigned int * indices = (unsigned int *)malloc(meshNumIndices*sizeof(unsigned int));
    define_triangle_indices(indices, m, n);

    // draw setup
    verticesPositions = positions;
    textureCoordinates = texCoord;
    numberOfIndices = meshNumIndices;
    triangleIndices = indices;

    setShaders();
}

void OpenGLCanvas::define_texture_coordinates(float *texCoord, int m, int n, float min_phi, float max_phi, float min_lambda, float max_lambda){

    float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
    float delta_phi = (max_phi-min_phi)/(1.0*(m-1));

    for (int i = 0; i<m; i++){
        for (int j = 0; j<n; j++){
            texCoord[2*(j+i*n)] = (min_lambda+delta_lambda*j)/(2*CONST_PI_F) + 0.5;
            texCoord[2*(j+i*n)+1] = (min_phi+delta_phi*i)/(CONST_PI_F) + 0.5;
        }
    }

}

// This function makes the same computation GLSL does. It is never called.
void OpenGLCanvas::vertex_transformation(float *positions, int m, int n, float center_lambda, float center_phi, float fov_rads, float scale){

    float min_lambda = -CONST_PI_F;
    float max_lambda = CONST_PI_F;
    float min_phi = -CONST_PI_2_F;
    float max_phi = CONST_PI_2_F;

    float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
    float delta_phi = (max_phi-min_phi)/(1.0*(m-1));

    float lambda, phi, x, y, z, u, v, r, theta;

    //calculating the extent of the projection for the given FOV
    lambda=fov_rads;
    phi=0.f;
    // OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
    y=sinf(phi);
    x=-sinf(lambda)*cosf(phi);
    z = -cosf(lambda)*cosf(phi);
    u=2.f*x/(1.f-z);
    v=2.f*y/(1.f-z);
    r=hypotf(u,v);
    theta=atan2f(u,v);
    r*=scale;
    u=-r*sinf(theta);
    v=r*cosf(theta);
    x=(4.f*u)/(u*u+v*v+4.f);
    y=(4.f*v)/(u*u+v*v+4.f);
    z=(u*u+v*v-4.f)/(u*u+v*v+4.f);
    u=x/(-z);
    v=y/(-z);
    float extent=u;

    for (int i = 0; i<m; i++){
        for (int j = 0; j<n; j++){

            lambda=(min_lambda+delta_lambda*j);
            phi=(min_phi+delta_phi*i);

            // OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
            y=sinf(phi);
            x=-sinf(lambda)*cosf(phi);
            z=-cosf(lambda)*cosf(phi);

            //Rotation 1: (-center_lambda)-rotation on the xz-plane
            float x_copy=x;
            x=cosf(-center_lambda)*x-sinf(-center_lambda)*z;
            //y=1.f*y;
            z=sinf(-center_lambda)*x_copy+cosf(-center_lambda)*z;

            //Rotation 2: (-center_phi)-rotation on the yz-plane
            float y_copy=y;
            //x = 1.f*x;
            y=cosf(-center_phi)*y-sinf(-center_phi)*z;
            z=sinf(-center_phi)*y_copy+cosf(-center_phi)*z;

            u=2.f*x/(1.f-z);
            v=2.f*y/(1.f-z);

            r=hypotf(u,v);
            theta=atan2f(u,v);

            // scaling the complex plane according to scale specified in the interface (relate it to FOV)
            r*=scale;

            u=-r*sinf(theta);
            v=r*cosf(theta);

            x=(4.f*u)/(u*u+v*v+4.f);
            y=(4.f*v)/(u*u+v*v+4.f);
            z=(u*u+v*v-4.f)/(u*u+v*v+4.f);

            lambda=atan2f(x,-z)/CONST_PI_F;
            phi=asinf(y)/CONST_PI_2_F;

            if (visualization=="Moebius" || visualization=="Perspective"){
                u = x/(-z);
                v = y/(-z);
                positions[3*(j+i*n)] = u/extent;
                positions[3*(j+i*n)+1] = v/extent;
                positions[3*(j+i*n)+2] = z;
            }
            else if (visualization=="3D Sphere"){
                positions[3*(j+i*n)] = 0.9f*x;
                positions[3*(j+i*n)+1] = 0.9f*y;
                positions[3*(j+i*n)+2] = z;
            }
            else if (visualization=="Equi-Rectangular"){
                positions[3*(j+i*n)] = lambda;
                positions[3*(j+i*n)+1] = phi;
                positions[3*(j+i*n)+2] = z;
            }
            else if (visualization=="Stereographic"){
                u = 2*x/(-z+1);
                v = 2*y/(-z+1);
                positions[3*(j+i*n)] = u/extent;
                positions[3*(j+i*n)+1] = v/extent;
                positions[3*(j+i*n)+2] = z;
            }
            else if (visualization=="Mercator"){
                u=lambda;
                v=logf((1.0/cosf(phi))+tanf(phi));
                positions[3*(j+i*n)] = u/extent;
                positions[3*(j+i*n)+1] = v/extent;
                positions[3*(j+i*n)+2] = z;
            }
            else if (visualization=="Orthographic"){
                u=x;
                v=y;
                positions[3*(j+i*n)]=x/extent;
                positions[3*(j+i*n)+1]=y/extent;
                positions[3*(j+i*n)+2]=z;
            }
#ifdef PANO_EXTENDED_CONTROLS
            else if (visualization=="Pannini"){
                u = 2*x/(-z+pd);
                v = 2*y/(-z+pd);
                positions[3*(j+i*n)] = u/extent;
                positions[3*(j+i*n)+1] = v/extent;
                positions[3*(j+i*n)+2] = z;
            }
            else if (visualization=="Zorin-Barr"){
                // perspective
                u = x/(-z);
                v = y/(-z);
                // apply Z-B transformation to (u,v)
                float lambda=.1f;
                float R=1.f;
                float alpha=atanf(v/u);
                float r=hypotf(u,v);
                float rhoprime=(lambda*r/R)+(1.f-lambda)*(R*(sqrtf(r*r+1.f)-1.f))/(r*(sqrtf(R*R+1.f)-1.f));
                u=rhoprime*cosf(alpha);
                v=rhoprime*sinf(alpha);
                //
                positions[3*(j+i*n)] = u/extent;
                positions[3*(j+i*n)+1] = v/extent;
                positions[3*(j+i*n)+2] = z;
            }
#endif // PANO_EXTENDED_CONTROLS
        }
    }
}

void OpenGLCanvas::load_sphere_mesh(float *positions, int m, int n){

    float min_lambda = -CONST_PI_F;
    float max_lambda = CONST_PI_F;
    float min_phi = -CONST_PI_2_F;
    float max_phi = CONST_PI_2_F;

    float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
    float delta_phi = (max_phi-min_phi)/(1.0*(m-1));

    float lambda, phi, x, y, z;

    for (int i = 0; i<m; i++){
        for (int j = 0; j<n; j++){

            lambda=(min_lambda+delta_lambda*j);
            phi=(min_phi+delta_phi*i);

            // OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
            y=sinf(phi);
            x=-sinf(lambda)*cosf(phi);
            z=-cosf(lambda)*cosf(phi);

            positions[3*(j+i*n)] = x;
            positions[3*(j+i*n)+1] = y;
            positions[3*(j+i*n)+2] = z;

        }
    }

}

float OpenGLCanvas::calculate_extent(float fov_rads){
    float lambda, phi, x, y, z, u, v, r, theta;
    //calculating the extent of the projection for the given FOV
    lambda=fov_rads;
    phi=0.f;
    // OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
    y=sinf(phi);
    x=-sinf(lambda)*cosf(phi);
    z=-cosf(lambda)*cosf(phi);
    u=2.f*x/(1.f-z);
    v=2.f*y/(1.f-z);
    r=hypotf(u,v);//sqrt(u*u+v*v);
    theta=atan2f(u,v);
    r*=scale;
    u=-r*sinf(theta);
    v=r*cosf(theta);
    x=(4.f*u)/(u*u+v*v+4.f);
    y=(4.f*v)/(u*u+v*v+4.f);
    z=(u*u+v*v-4.f)/(u*u+v*v+4.f);
    if (visualization=="Moebius" || visualization=="Perspective"){
        u=x/(-z);
        v=y/(-z);
    }
    else if (visualization=="Stereographic"){
        u=2.f*x/(1.f-z);
        v=2.f*y/(1.f-z);
    }
    else if (visualization=="Mercator"){
        u=fov_rads;
        // Warning: this extent calculation is wrong.
        // Write now it's olny showing the entire panorama intead of
        // the corresponging FOV.
    }
    else if (visualization=="Orthographic"){
        if(z<0.f){
            u=x;
            v=y;
        }else{
            u=v=1.f;
        }
    }
#ifdef PANO_EXTENDED_CONTROLS
    else if (visualization=="Pannini"){
        u=2.f*x/(pd-z);
        v=2.f*y/(pd-z);
    }
    else if (visualization=="Zorin-Barr"){
        // TODO: check whether this is correct
        u=x/(-z);
        v=y/(-z);
    }
#endif // PANO_EXTENDED_CONTROLS
    return u;
}

void OpenGLCanvas::define_triangle_indices(unsigned int * indices, int m, int n){

    for (int i = 0; i<m-1; i++){
        for (int j = 0; j<n-1; j++){

            unsigned int index = (j+i*n);

            indices[3*(2*(j+i*(n-1)))] = index;
            indices[3*(2*(j+i*(n-1)))+1] = index+1;
            indices[3*(2*(j+i*(n-1)))+2] = index+n;

            indices[3*(2*(j+i*(n-1))+1)] = index+1;
            indices[3*(2*(j+i*(n-1))+1)+1] = index+n+1;
            indices[3*(2*(j+i*(n-1))+1)+2] = index+n;

        }
    }

}

// This function computes a new value of the maximum fov and must be called
// when the fov is changed and the auto setting is enabled.
int OpenGLCanvas::compute_auto_fov_max(int new_fov){
        if(new_fov<60)
            return 60;
        if(new_fov>179)
            return 1;
        //if(new_fov>60)
            return (90-new_fov/2);
}

// This function computes the scale, in function of the projection method,
// the fov/scale ratio and the value of shrink_for_all.
void OpenGLCanvas::compute_scale(){
    if (shrink_for_all || visualization=="Moebius" || visualization=="3D Sphere"){
        if (fov<=fov_max){
            scale=1.f;
        //else if (fov>295.f)
        //    scale = 0.02f; // TODO: check this value wrt fov_max
        }else{
            if(fov_scale_relation == "Simple")
                scale=fov_max/fov;
            else if(fov_scale_relation == "Square Root")
                scale=sqrtf((360.f-fov_max-fov)/(360.f-2.f*fov_max));
            else if(fov_scale_relation == "Linear")
                scale=(360.f-fov_max-fov)/(360.f-2.f*fov_max);
            else if(fov_scale_relation == "Square Power")
                scale=powf((360.f-fov_max-fov)/(360.f-2.f*fov_max),2.f);
            else if(fov_scale_relation == "Cubic Power")
                scale=powf((360.f-fov_max-fov)/(360.f-2.f*fov_max),3.f);
            else if(fov_scale_relation == "Logarithm")
                scale=logf(expf(1.f)+(1.f-expf(1.f))*(fov-fov_max)/(360.f-2.f*fov_max));
        }
    }else{
        scale=1.f;
    }
}


void OpenGLCanvas::resizeGL(int w, int h){
    if(w>h)
        glViewport(0,(h-w)/2,w,w);
    else
        glViewport((w-h)/2,0,h,h);
}

char * OpenGLCanvas::textFileRead(char *fn) {

    FILE *fp;
    char *content = NULL;
    int f, count;
    f = OPEN_FILE(fn, O_RDONLY);
    count = LSEEK_FD(f, 0, SEEK_END);
//    close(f);
    if (fn != NULL) {
        FOPEN_RO(fp,fn);
        if (fp != NULL) {
            if (count > 0) {
                content = (char *)malloc(sizeof(char) * (count+1));
                count = fread(content,sizeof(char),count,fp);
                content[count] = '\0';
            }
            fclose(fp); // maybe this line must be outside the {}
        }
    }
    return content;
}

void OpenGLCanvas::setShaders() {

    char *vs,*fs;

#ifndef __APPLE__
  #ifdef GLEW_VERSION_1_5
    GLenum err=glewInit();
    if(err!=GLEW_OK){
        fprintf(stderr,"error in GLEW initialization: %s\n",glewGetString(err));
        exit(-1);
    }
  #endif
#endif

    GLuint v = glCreateShader(GL_VERTEX_SHADER);
    GLuint f = glCreateShader(GL_FRAGMENT_SHADER);

    // Configure vertex and fragment shader files.
    char *vs_file=(char*)malloc(512*sizeof(char*));
    char *fs_file=(char*)malloc(512*sizeof(char*));
    if(!strcmp(shader_dir,"")){ // if shader_dir was not configured
        if(!GET_WORKDIR(vs_file,512)||!GET_WORKDIR(fs_file,512)){
            fprintf(stderr,"error reading shader files\n");
            exit(-1);
        }
        strcat(vs_file,"/shaders/");
        strcat(fs_file,"/shaders/");
    }else{;
        strcpy(vs_file,shader_dir);
        strcat(vs_file,"/");
        strcpy(fs_file,shader_dir);
        strcat(fs_file,"/");
    }
    strcat(vs_file,VERT_SHADER_FILE);
    strcat(fs_file,FRAG_SHADER_FILE);
    fprintf(stderr,"vs_file=%s\nfs_file=%s\n",vs_file,fs_file);

    struct stat vs_testbuf,fs_testbuf;
    if(stat(vs_file,&vs_testbuf)||stat(fs_file,&fs_testbuf)){
        fprintf(stderr,"a shader file does not exist!\n");
        free(vs_file);
        free(fs_file);
        exit(-1);
    }

    vs=textFileRead(vs_file);
    fs=textFileRead(fs_file);

    const char * vv = vs;
    const char * ff = fs;

    glShaderSource(v, 1, &vv,NULL);
    glShaderSource(f, 1, &ff,NULL);

    free(vs);free(fs);
    free(vs_file);free(fs_file);

    glCompileShader(v);
    glCompileShader(f);

    GLuint p = glCreateProgram();

#ifdef PANO_EXTENDED_CONTROLS
    // Bind attributes pd, zblambda and zbR to the vertex shader.
    glVertexAttrib1f(PD_ATTR,pd);
    glBindAttribLocation(p,PD_ATTR,"pd");
    glVertexAttrib1f(ZBL_ATTR,zblambda);
    glBindAttribLocation(p,ZBL_ATTR,"zblambda");
    glVertexAttrib1f(ZBR_ATTR,zbR);
    glBindAttribLocation(p,ZBR_ATTR,"zbR");
#endif // PANO_EXTENDED_CONTROLS

    glAttachShader(p,v);
    glAttachShader(p,f);

    glLinkProgram(p);
    glUseProgram(p);

}

void OpenGLCanvas::mousePressEvent(QMouseEvent *event){
    lastPos=event->pos();
    //fprintf(stderr,"mouse click\n");
}

void OpenGLCanvas::mouseMoveEvent(QMouseEvent *event){
    // scroll with the left button
    if(event->buttons()==Qt::LeftButton){
        // compute the delta and move the image
        center_lambda+=(event->x()-lastPos.x())*CONST_PI_F/image_size_x;
        center_phi+=(event->y()-lastPos.y())*CONST_PI_F/image_size_y;
        lastPos=event->pos();
        updateGL();
    }
}

void OpenGLCanvas::wheelEvent(QWheelEvent *event){
    if(event->orientation()==Qt::Vertical){
        if(event->modifiers()==Qt::ShiftModifier){
            change_fov_max(fov_max+((double)event->delta())/30);
        }else{
            int new_fov=fov+event->delta()/30;
            change_fov((double)new_fov);
            if(auto_fov_max)
                change_fov_max(compute_auto_fov_max(new_fov));
        }
    }
}

void OpenGLCanvas::paintGL(){

    float fov_rads = (fov/360.f)*CONST_PI_F;

//    // changing scale to generate the figures for the paper (remove it after)
//    scale = 0.8;

    // defining transformation parameters (that will be passed to the vertex shader)
    float extent=calculate_extent(fov_rads);
    float vis_mode=.0f;
    if (visualization=="Moebius" || visualization=="Perspective") vis_mode=1.f;
    else if (visualization=="3D Sphere") vis_mode=2.f;
    else if (visualization=="Equi-Rectangular") vis_mode=3.f;
    else if (visualization=="Stereographic") vis_mode=4.f;
    else if (visualization=="Mercator") vis_mode=5.f;
    else if (visualization=="Orthographic") vis_mode=4.5f;
#ifdef PANO_EXTENDED_CONTROLS
    else if (visualization=="Pannini") vis_mode=4.25f;
    else if (visualization=="Zorin-Barr") vis_mode=6.f;
#endif // PANO_EXTENDED_CONTROLS
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(0.0, 2.0/extent, 0.0, 2.0/scale, 0.0, -2.0/vis_mode);

    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glOrtho(0.0, 2.0/center_lambda, 0.0, 2.0/center_phi, -1.0, 1.0);

    // drawing the mesh
    glClearColor(1.0, 1.0, 1.0, 1.0);

    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glEnable(GL_TEXTURE_2D);
    glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

    glColor3f(1, 0, 0);

    glEnableClientState(GL_VERTEX_ARRAY);
    glVertexPointer(3, GL_FLOAT, 0, verticesPositions);
    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
    glTexCoordPointer(2, GL_FLOAT, 0, textureCoordinates);

    glDrawElements(GL_TRIANGLES, numberOfIndices, GL_UNSIGNED_INT, triangleIndices);
    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
    glDisableClientState(GL_VERTEX_ARRAY);

    time_frames++;
//    if (time_frames > 0) {
        double dt = time_time.elapsed();
//        if (dt > 0.5) {
            time_fps = time_frames/dt;
            time_frames = 0;
            time_time.reset();
            emit fps(QString("%1 fps").arg((int)(time_fps+0.5)));
            //printf("fps = %d ", (int)(time_fps+0.5));
//        }
//    }

}