Newer
Older
#ifdef WINDOWS
#include <direct.h>
#define GET_WORKDIR _getcwd
#else
#include <unistd.h>
#define GET_WORKDIR getcwd
#endif
#include <sys/types.h> // for fstat
#include <sys/stat.h> // for fstat
#define INPUT_IMAGE_FILE "input_images/image_4_input.pnm"
#define VERT_SHADER_FILE "shaders/test_vertex_shader.vert"
#define FRAG_SHADER_FILE "shaders/fragment_shader.frag"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
OpenGLCanvas::OpenGLCanvas(QWidget *parent) :
QGLWidget(parent)
{
setFormat(QGL::DoubleBuffer | QGL::DepthBuffer);
fov = 60.f;
scale = 1.0f;
center_lambda = 0.f;
center_phi = 0.f;
fov_scale_relation = "Square Root";
visualization = "Perspective";
time_frames = 0;
time_timer.setInterval(0);
connect(&time_timer, SIGNAL(timeout()), this, SLOT(slotTimer()));
time_start = time_time.time();
}
void OpenGLCanvas::slotTimer(void) {
updateGL();
}
void OpenGLCanvas::change_fov(double f){
if (fov!=f && f>=1.f && f<=360.f) fov = f;
if (fov<60.f) scale = 1.f;
else if (fov>295.f) scale = 0.02f;
else {
if (fov_scale_relation == "Square Root") scale = sqrt((300.f-fov)/240.f);
else if (fov_scale_relation == "Linear") scale = (300.f-fov)/240.f;
else if (fov_scale_relation == "Square Power") scale = powf((300.f-fov)/240.f,2);
else if (fov_scale_relation == "Cubic Power") scale = powf((300.f-fov)/240.f,3);
else if (fov_scale_relation == "Logarithm") scale = log(exp(1.f) + (1.f-exp(1.f))*(fov-60.f)/240.f);
}
// scale = 0.3f;
updateGL();
}
//void OpenGLCanvas::change_scale(double s){
// if (scale!=s && s>=0.0 && s<=1.0) scale = s;
// updateGL();
//}
void OpenGLCanvas::change_center_lambda(double lambda){
if (center_lambda!=lambda && lambda>=-3.14f && lambda<=3.14f) {
center_lambda = lambda;
updateGL();
}
}
void OpenGLCanvas::change_center_phi(double phi){
if (center_phi!=phi && phi>=-1.57f && phi<=1.57f) {
center_phi = phi;
updateGL();
}
}
void OpenGLCanvas::change_fov_scale_relation(QString name){
fov_scale_relation = name;
if (fov<60.f) scale = 1.f;
else if (fov>295.f) scale = 0.01f;
else{
if (fov_scale_relation == "Square Root") scale = sqrt((300.f-fov)/240.f);
else if (fov_scale_relation == "Linear") scale = (300.f-fov)/240.f;
else if (fov_scale_relation == "Square Power") scale = powf((300.f-fov)/240.f,2);
else if (fov_scale_relation == "Cubic Power") scale = powf((300.f-fov)/240.f,3);
else if (fov_scale_relation == "Logarithm") scale = log(exp(1.f) + (1.f-exp(1.f))*(fov-60.f)/240.f);
}
updateGL();
}
void OpenGLCanvas::change_visualization(QString name){
visualization = name;
void OpenGLCanvas::load_image(const char *new_image){
const char * const progname=(char*)(PROGNAME);
int textureSize=getTextureSize(progname,new_image);
unsigned char * textureBytes=(unsigned char*)malloc(textureSize);
int width,height;
readTextureBytes(progname,new_image,textureBytes,&width,&height);
glPixelStorei(GL_UNPACK_ALIGNMENT,1);
GLuint tex;
glGenTextures(1,&tex);
glBindTexture(GL_TEXTURE_2D,tex);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D,0, GL_RGB, width,height,0,GL_RGB,GL_UNSIGNED_BYTE,textureBytes);
}
load_image(QFileDialog::getOpenFileName(this,tr("Choose Panorama File")).toStdString().c_str());
void OpenGLCanvas::initializeGL(){
glShadeModel(GL_SMOOTH);
glClearColor(1.0f,1.0f,1.0f,0.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST);
char *input_image=(char*)malloc(512*sizeof(char*));
if(!GET_WORKDIR(input_image,512)){
fprintf(stderr,"too long pathname\n");
exit(-1);
};
strcat(input_image,"/\0");
strcat(input_image,INPUT_IMAGE_FILE);
#ifdef __APPLE__
//const char * input_image = INPUT_IMAGE_FILE;
#else
// progname is a file name or a path???
const char * const progname = (char*)(PROGNAME);
//const char * input_image = (char*)(INPUT_IMAGE_FILE);
#endif
fprintf(stderr,"progname=%s\n",progname);
fprintf(stderr,"default image=%s\n",input_image);
// what to do if the input file does not exist
struct stat testbuf;
if(stat(input_image,&testbuf)){
fprintf(stderr,"the default image file does not exist!\n");
load_image(QFileDialog::getOpenFileName(this,tr("Choose Panorama File")).toStdString().c_str());
}else{
load_image(input_image);
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// mesh resolution
int m,n;
m = n = 100;
//defining texture coordinates
int meshNumTexCoord = m*n;
float *texCoord = (float *)malloc(2*meshNumTexCoord*sizeof(float));
if (texCoord == NULL){
printf("problem allocating memory for texture coordinates \n");
}
define_texture_coordinates(texCoord, m, n, -1.57f, 1.57f, -3.14f, 3.14f);
//defining positions of the sphere vertices
int meshNumVertices = m*n;
float* positions = (float *)malloc(3*meshNumVertices*sizeof(float));
if (positions == NULL){
printf("problem allocating memory for positions \n");
}
// vertex_transformation(positions, m, n, center_lambda, center_phi, fov_rads, scale); //passar pelo vertex shader
load_sphere_mesh(positions, m, n); //colocar essa e funcoes para textura e triangulos no initializeGL
//defining triagle indices
unsigned int meshNumFaces = 2*(m-1)*(n-1);
unsigned int meshNumIndices = 3*meshNumFaces;
unsigned int * indices = (unsigned int *)malloc(meshNumIndices*sizeof(unsigned int));
define_triangle_indices(indices, m, n);
// draw setup
verticesPositions = positions;
textureCoordinates = texCoord;
numberOfIndices = meshNumIndices;
triangleIndices = indices;
setShaders();
}
void OpenGLCanvas::define_texture_coordinates(float *texCoord, int m, int n, float min_phi, float max_phi, float min_lambda, float max_lambda){
float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
float delta_phi = (max_phi-min_phi)/(1.0*(m-1));
for (int i = 0; i<m; i++){
for (int j = 0; j<n; j++){
texCoord[2*(j+i*n)] = (min_lambda+delta_lambda*j)/(6.2832) + 0.5;
texCoord[2*(j+i*n)+1] = (min_phi+delta_phi*i)/(3.1416) + 0.5;
}
}
}
void OpenGLCanvas::vertex_transformation(float *positions, int m, int n, float center_lambda, float center_phi, float fov_rads, float scale){
float min_lambda = -3.1415f;
float max_lambda = 3.1415f;
float min_phi = -1.5708f;
float max_phi = 1.5708f;
float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
float delta_phi = (max_phi-min_phi)/(1.0*(m-1));
float lambda, phi, x, y, z, u, v, r, theta;
//calculating the extent of the projection for the given FOV
lambda = fov_rads;
phi = 0.f;
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
u = 2.f*x/(-z+1.f);
v = 2.f*y/(-z+1.f);
r = sqrt(u*u+v*v);
theta = atan2(u,v);
r *= scale;
u = -r*sin(theta);
v = r*cos(theta);
x = (4.f*u)/(u*u+v*v+4.f);
y = (4.f*v)/(u*u+v*v+4.f);
z = (u*u+v*v-4.f)/(u*u+v*v+4.f);
u = x/(-z);
v = y/(-z);
float extent = u;
for (int i = 0; i<m; i++){
for (int j = 0; j<n; j++){
lambda = (min_lambda+delta_lambda*j);
phi = (min_phi+delta_phi*i);
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
//Rotation 1: (-center_lambda)-rotation on the xz-plane
float x_copy = x;
x = cos(-center_lambda)*x - sin(-center_lambda)*z;
y = 1.f*y;
z = sin(-center_lambda)*x_copy + cos(-center_lambda)*z;
//Rotation 2: (-center_phi)-rotation on the yz-plane
float y_copy = y;
x = 1.f*x;
y = cos(-center_phi)*y - sin(-center_phi)*z;
z = sin(-center_phi)*y_copy + cos(-center_phi)*z;
u = 2.f*x/(-z+1.f);
v = 2.f*y/(-z+1.f);
r = sqrt(u*u+v*v);
theta = atan2(u,v);
// scaling the complex plane according to scale specified in the interface (relate it to FOV)
r *= scale;
u = -r*sin(theta);
v = r*cos(theta);
x = (4.f*u)/(u*u+v*v+4.f);
y = (4.f*v)/(u*u+v*v+4.f);
z = (u*u+v*v-4.f)/(u*u+v*v+4.f);
lambda = atan2(x,-z)/3.1415;
phi = asin(y)/1.5708;
u = x/(-z);
v = y/(-z);
if (visualization=="Perspective"){
positions[3*(j+i*n)] = u/extent;
positions[3*(j+i*n)+1] = v/extent;
positions[3*(j+i*n)+2] = z;
}
if (visualization=="3D Sphere"){
positions[3*(j+i*n)] = 0.9f*x;
positions[3*(j+i*n)+1] = 0.9f*y;
positions[3*(j+i*n)+2] = z;
}
if (visualization=="Equi-Rectangular"){
positions[3*(j+i*n)] = lambda;
positions[3*(j+i*n)+1] = phi;
positions[3*(j+i*n)+2] = z;
}
}
}
}
void OpenGLCanvas::load_sphere_mesh(float *positions, int m, int n){
float min_lambda = -3.1415f;
float max_lambda = 3.1415f;
float min_phi = -1.5708f;
float max_phi = 1.5708f;
float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
float delta_phi = (max_phi-min_phi)/(1.0*(m-1));
float lambda, phi, x, y, z;
for (int i = 0; i<m; i++){
for (int j = 0; j<n; j++){
lambda = (min_lambda+delta_lambda*j);
phi = (min_phi+delta_phi*i);
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
positions[3*(j+i*n)] = x;
positions[3*(j+i*n)+1] = y;
positions[3*(j+i*n)+2] = z;
}
}
}
float OpenGLCanvas::calculate_extent(float fov_rads){
float lambda, phi, x, y, z, u, v, r, theta;
//calculating the extent of the projection for the given FOV
lambda = fov_rads;
phi = 0.f;
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
u = 2.f*x/(-z+1.f);
v = 2.f*y/(-z+1.f);
r = sqrt(u*u+v*v);
theta = atan2(u,v);
r *= scale;
u = -r*sin(theta);
v = r*cos(theta);
x = (4.f*u)/(u*u+v*v+4.f);
y = (4.f*v)/(u*u+v*v+4.f);
z = (u*u+v*v-4.f)/(u*u+v*v+4.f);
u = x/(-z);
v = y/(-z);
return u;
}
void OpenGLCanvas::define_triangle_indices(unsigned int * indices, int m, int n){
for (int i = 0; i<m-1; i++){
for (int j = 0; j<n-1; j++){
unsigned int index = (j+i*n);
indices[3*(2*(j+i*(n-1)))] = index;
indices[3*(2*(j+i*(n-1)))+1] = index+1;
indices[3*(2*(j+i*(n-1)))+2] = index+n;
indices[3*(2*(j+i*(n-1))+1)] = index+1;
indices[3*(2*(j+i*(n-1))+1)+1] = index+n+1;
indices[3*(2*(j+i*(n-1))+1)+2] = index+n;
}
}
}
int OpenGLCanvas::getTextureSize(const char * const progname, const char * texturePath)
{
struct pam inpam;
pm_init(progname, 0);
FILE * in_file = fopen(texturePath,"r");
if (in_file==NULL){
fprintf(stderr,"ERROR in getTextureSize: unable to open specified file\n");
return -1;
}
#ifdef PAM_STRUCT_SIZE
pnm_readpaminit(in_file,&inpam,PAM_STRUCT_SIZE(tuple_type));
#else
pnm_readpaminit(in_file,&inpam,sizeof(struct pam));
#endif
int size = inpam.width*inpam.height*inpam.depth*inpam.bytes_per_sample;
pm_close(in_file);
//fprintf(stderr,"size=%d\n",size);
return size;
}
void OpenGLCanvas::readTextureBytes(const char * const progname,
const char * texturePath,
unsigned char * textureBytes,
int * outImageWidth,
int * outImageHeight)
{
struct pam inpam;
tuple * tuplerow;
int row;
pm_init(progname, 0);
FILE * in_file = fopen(texturePath, "r");
#ifdef PAM_STRUCT_SIZE
pnm_readpaminit(in_file,&inpam,PAM_STRUCT_SIZE(tuple_type));
#else
pnm_readpaminit(in_file,&inpam,sizeof(struct pam));
#endif
tuplerow = pnm_allocpamrow(&inpam);
for (row = 0; row < inpam.height; row++) {
int column;
pnm_readpamrow(&inpam, tuplerow);
for (column = 0; column < inpam.width; ++column) {
unsigned int plane;
for (plane = 0; plane < inpam.depth; ++plane) {
textureBytes[(inpam.height-row-1)*3*inpam.width+3*column+plane] = tuplerow[column][plane];
}
}
}
pnm_freepamrow(tuplerow);
*outImageWidth = inpam.width;
*outImageHeight = inpam.height;
pm_close(in_file);
}
void OpenGLCanvas::resizeGL(int w, int h){
if(w>h)
glViewport(0,(h-w)/2,w,w);
else
glViewport((w-h)/2,0,h,h);
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
}
char * OpenGLCanvas::textFileRead(char *fn) {
FILE *fp;
char *content = NULL;
int f, count;
f = open(fn, O_RDONLY);
count = lseek(f, 0, SEEK_END);
// close(f);
if (fn != NULL) {
fp = fopen(fn,"rt");
if (fp != NULL) {
if (count > 0) {
content = (char *)malloc(sizeof(char) * (count+1));
count = fread(content,sizeof(char),count,fp);
content[count] = '\0';
}
fclose(fp);
}
}
return content;
}
void OpenGLCanvas::setShaders() {
char *vs,*fs;
#ifdef GLEW_VERSION_1_5
GLenum err=glewInit();
if(err!=GLEW_OK){
fprintf(stderr,"error in GLEW initialization: %s\n",glewGetString(err));
exit(-1);
}
#endif
GLuint v = glCreateShader(GL_VERTEX_SHADER);
GLuint f = glCreateShader(GL_FRAGMENT_SHADER);
char *vs_file=(char*)malloc(512*sizeof(char*));
if(!GET_WORKDIR(vs_file,512)){
fprintf(stderr,"too long pathname\n");
exit(-1);
};
strcat(vs_file,"/\0");
strcat(vs_file,VERT_SHADER_FILE);
fprintf(stderr,"vs_file=%s\n",vs_file);
char *fs_file=(char*)malloc(512*sizeof(char*));
if(!GET_WORKDIR(fs_file,512)){
fprintf(stderr,"too long pathname\n");
exit(-1);
};
strcat(fs_file,"/\0");
strcat(fs_file,FRAG_SHADER_FILE);
fprintf(stderr,"fs_file=%s\n",fs_file);
struct stat vs_testbuf,fs_testbuf;
if(stat(vs_file,&vs_testbuf)||stat(fs_file,&fs_testbuf)){
fprintf(stderr,"a shader file does not exist!\n");
free(vs_file);
free(fs_file);
exit(-1);
}
//#ifdef __APPLE__
// in Mac
//vs = textFileRead(VERT_SHADER_FILE);
//fs = textFileRead(FRAG_SHADER_FILE);
//#else
// in Linux (I think this would also work in mac, I just need to try)
vs=textFileRead(vs_file);
fs=textFileRead(fs_file);
//#endif
const char * vv = vs;
const char * ff = fs;
glShaderSource(v, 1, &vv,NULL);
glShaderSource(f, 1, &ff,NULL);
free(vs);free(fs);
glCompileShader(v);
glCompileShader(f);
GLuint p = glCreateProgram();
glAttachShader(p,v);
glAttachShader(p,f);
glLinkProgram(p);
glUseProgram(p);
}
void OpenGLCanvas::paintGL(){
float fov_rads = (fov/180.f)*1.5708f;
// // changing scale to generate the figures for the paper (remove it after)
// scale = 0.8;
// defining transformation parameters (that will be passed to the vertex shader)
float extent = calculate_extent(fov_rads);
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
if (visualization=="Perspective") vis_mode=1.0;
else if (visualization=="3D Sphere") vis_mode=2.0;
else if (visualization=="Equi-Rectangular") vis_mode=3.0;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 2.0/extent, 0.0, 2.0/scale, 0.0, -2.0/vis_mode);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glOrtho(0.0, 2.0/center_lambda, 0.0, 2.0/center_phi, -1.0, 1.0);
// drawing the mesh
glClearColor(1.0, 1.0, 1.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor3f(1, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, verticesPositions);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, textureCoordinates);
glDrawElements(GL_TRIANGLES, numberOfIndices, GL_UNSIGNED_INT, triangleIndices);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
time_frames++;
// if (time_frames > 0) {
double dt = time_time.elapsed();
// if (dt > 0.5) {
time_fps = time_frames/dt;
time_frames = 0;
time_time.reset();
emit fps(QString("%1 fps").arg((int)(time_fps+0.5)));
printf("fps = %d ", (int)(time_fps+0.5));
// }
// }
}