Newer
Older
#include <unistd.h> // for getcwd, getpwuid, getuid
#include <sys/types.h> // for fstat, getpwuid, getuid
#include <sys/stat.h> // for fstat
#include <pwd.h> // for getpwuid (TODO: windows?)
#include <cstdio> // for fopen, fclose, getc
#include <cstring>
#ifdef WINDOWS
#include <direct.h>
#define GET_WORKDIR _getcwd
#else
#define VERT_SHADER_FILE "test_vertex_shader.vert"
#define FRAG_SHADER_FILE "fragment_shader.frag"
OpenGLCanvas::OpenGLCanvas(QWidget *parent) :
QGLWidget(parent)
{
setFormat(QGL::DoubleBuffer | QGL::DepthBuffer);
fov = 60.f;
fov_max = 60.f; // TODO: I only use floats here because Leo did... check
scale = 1.0f;
center_lambda = 0.f;
center_phi = 0.f;
fov_scale_relation = "Square Root";
visualization = "Perspective";
time_frames = 0;
time_timer.setInterval(0);
connect(&time_timer, SIGNAL(timeout()), this, SLOT(slotTimer()));
time_start = time_time.time();
fprintf(stderr,"scale=%f\nfov_max=%f\n",scale,fov_max);
}
void OpenGLCanvas::slotTimer(void) {
updateGL();
}
void OpenGLCanvas::change_fov(double f){
if (fov!=f && f>=1.f && f<=360.f)
fov=f;
if (fov<=fov_max)
scale=1.f;
else if (fov>295.f)
scale = 0.02f; // TODO: check this value wrt fov_max
if (fov_scale_relation == "Naive")
scale=fov_max/fov;
else if (fov_scale_relation == "Square Root")
scale=sqrt((360.f-fov_max-fov)/(360.-2*fov_max));
else if (fov_scale_relation == "Linear")
scale=(360.f-fov_max-fov)/(360.-2*fov_max);
else if (fov_scale_relation == "Square Power")
scale=powf((360.f-fov_max-fov)/(360.-2*fov_max),2);
else if (fov_scale_relation == "Cubic Power")
scale=powf((360.f-fov_max-fov)/(360.-2*fov_max),3);
else if (fov_scale_relation == "Logarithm")
scale=log(exp(1.f)+(1.f-exp(1.f))*(fov-fov_max)/(360.-2*fov_max));
fprintf(stderr,"scale=%f\nfov_max=%f\n",scale,fov_max);
void OpenGLCanvas::change_fov_max(double new_fov_max){
fov_max=new_fov_max;
// TODO: change also the scale
fprintf(stderr,"scale=%f\nfov_max=%f\n",scale,fov_max);
updateGL();
}
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
//void OpenGLCanvas::change_scale(double s){
// if (scale!=s && s>=0.0 && s<=1.0) scale = s;
// updateGL();
//}
void OpenGLCanvas::change_center_lambda(double lambda){
if (center_lambda!=lambda && lambda>=-3.14f && lambda<=3.14f) {
center_lambda = lambda;
updateGL();
}
}
void OpenGLCanvas::change_center_phi(double phi){
if (center_phi!=phi && phi>=-1.57f && phi<=1.57f) {
center_phi = phi;
updateGL();
}
}
void OpenGLCanvas::change_fov_scale_relation(QString name){
fov_scale_relation = name;
if (fov<60.f) scale = 1.f;
else if (fov>295.f) scale = 0.01f;
else{
if (fov_scale_relation == "Naive")
scale=fov_max/fov;
else if (fov_scale_relation == "Square Root")
scale=sqrt((360.f-fov_max-fov)/(360.-2*fov_max));
else if (fov_scale_relation == "Linear")
scale=(360.f-fov_max-fov)/(360.-2*fov_max);
else if (fov_scale_relation == "Square Power")
scale=powf((360.f-fov_max-fov)/(360.-2*fov_max),2);
else if (fov_scale_relation == "Cubic Power")
scale=powf((360.f-fov_max-fov)/(360.-2*fov_max),3);
else if (fov_scale_relation == "Logarithm")
scale=log(exp(1.f)+(1.f-exp(1.f))*(fov-fov_max)/(360.-2*fov_max));
fprintf(stderr,"scale=%f\nfov_max=%f\n",scale,fov_max);
updateGL();
}
void OpenGLCanvas::change_visualization(QString name){
visualization = name;
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// This function reads the contents of the ~/.panorc file and stores the
// options in private variables.
// TODO: windows
void OpenGLCanvas::read_config_file(){
struct passwd *pw=getpwuid(getuid());
char *filepath=pw->pw_dir;
strcat(filepath,"/.panorc");
shader_dir=(char*)malloc(512*sizeof(char));
shader_dir[0]='\0';
input_image_file=(char*)malloc(512*sizeof(char));
input_image_file[0]='\0';
struct stat testbuf;
if(stat(filepath,&testbuf)){
fprintf(stderr,"~/.panorc does not exist\n");
}else{
FILE *rcfile=fopen(filepath,"r");
char c;
char *line=(char*)malloc(512*sizeof(char));
while((c=getc(rcfile))!=EOF){
while(c=='\n') // discard empty lines
c=getc(rcfile);
if(c==EOF)
break;
line[0]=c; // first char on the line was already read
if(!fgets(line+1,511,rcfile)){
fprintf(stderr,"error reading rcfile\n");
exit(-1);
}
// check for 'shader_dir' option
if(!strncmp(line,"shader_dir=",11)){
strcpy(shader_dir,line+11);
shader_dir[strlen(line)-12]='\0';
fprintf(stderr,"shader_dir=%s\n",shader_dir);
}
// check for 'image_file' option
if(!strncmp(line,"image_file=",11)){
strcpy(input_image_file,line+11);
input_image_file[strlen(line)-12]='\0';
fprintf(stderr,"input_image_file=%s\n",input_image_file);
}
}
fclose(rcfile);
}
}
void OpenGLCanvas::load_image(const char *new_image){
const char * const progname=(char*)(PROGNAME);
int textureSize=getTextureSize(progname,new_image);
unsigned char * textureBytes=(unsigned char*)malloc(textureSize);
int width,height;
readTextureBytes(progname,new_image,textureBytes,&width,&height);
glPixelStorei(GL_UNPACK_ALIGNMENT,1);
GLuint tex;
glGenTextures(1,&tex);
glBindTexture(GL_TEXTURE_2D,tex);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D,0, GL_RGB, width,height,0,GL_RGB,GL_UNSIGNED_BYTE,textureBytes);
}
load_image(QFileDialog::getOpenFileName(this,tr("Choose Panorama File")).toStdString().c_str());
void OpenGLCanvas::initializeGL(){
glShadeModel(GL_SMOOTH);
glClearColor(1.0f,1.0f,1.0f,0.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST);
#else
// progname is a file name or a path???
const char * const progname = (char*)(PROGNAME);
#endif
fprintf(stderr,"progname=%s\n",progname);
read_config_file();
// If the input file does not exist or was not specified.
if(stat(input_image_file,&testbuf)||!strcmp(input_image_file,"")){
load_image(QFileDialog::getOpenFileName(this,tr("Choose Panorama File")).toStdString().c_str());
}else{
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// mesh resolution
int m,n;
m = n = 100;
//defining texture coordinates
int meshNumTexCoord = m*n;
float *texCoord = (float *)malloc(2*meshNumTexCoord*sizeof(float));
if (texCoord == NULL){
printf("problem allocating memory for texture coordinates \n");
}
define_texture_coordinates(texCoord, m, n, -1.57f, 1.57f, -3.14f, 3.14f);
//defining positions of the sphere vertices
int meshNumVertices = m*n;
float* positions = (float *)malloc(3*meshNumVertices*sizeof(float));
if (positions == NULL){
printf("problem allocating memory for positions \n");
}
// vertex_transformation(positions, m, n, center_lambda, center_phi, fov_rads, scale); //passar pelo vertex shader
load_sphere_mesh(positions, m, n); //colocar essa e funcoes para textura e triangulos no initializeGL
//defining triagle indices
unsigned int meshNumFaces = 2*(m-1)*(n-1);
unsigned int meshNumIndices = 3*meshNumFaces;
unsigned int * indices = (unsigned int *)malloc(meshNumIndices*sizeof(unsigned int));
define_triangle_indices(indices, m, n);
// draw setup
verticesPositions = positions;
textureCoordinates = texCoord;
numberOfIndices = meshNumIndices;
triangleIndices = indices;
setShaders();
}
void OpenGLCanvas::define_texture_coordinates(float *texCoord, int m, int n, float min_phi, float max_phi, float min_lambda, float max_lambda){
float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
float delta_phi = (max_phi-min_phi)/(1.0*(m-1));
for (int i = 0; i<m; i++){
for (int j = 0; j<n; j++){
texCoord[2*(j+i*n)] = (min_lambda+delta_lambda*j)/(6.2832) + 0.5;
texCoord[2*(j+i*n)+1] = (min_phi+delta_phi*i)/(3.1416) + 0.5;
}
}
}
void OpenGLCanvas::vertex_transformation(float *positions, int m, int n, float center_lambda, float center_phi, float fov_rads, float scale){
float min_lambda = -3.1415f;
float max_lambda = 3.1415f;
float min_phi = -1.5708f;
float max_phi = 1.5708f;
float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
float delta_phi = (max_phi-min_phi)/(1.0*(m-1));
float lambda, phi, x, y, z, u, v, r, theta;
//calculating the extent of the projection for the given FOV
lambda = fov_rads;
phi = 0.f;
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
u = 2.f*x/(-z+1.f);
v = 2.f*y/(-z+1.f);
r = sqrt(u*u+v*v);
theta = atan2(u,v);
r *= scale;
u = -r*sin(theta);
v = r*cos(theta);
x = (4.f*u)/(u*u+v*v+4.f);
y = (4.f*v)/(u*u+v*v+4.f);
z = (u*u+v*v-4.f)/(u*u+v*v+4.f);
u = x/(-z);
v = y/(-z);
float extent = u;
for (int i = 0; i<m; i++){
for (int j = 0; j<n; j++){
lambda = (min_lambda+delta_lambda*j);
phi = (min_phi+delta_phi*i);
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
//Rotation 1: (-center_lambda)-rotation on the xz-plane
float x_copy = x;
x = cos(-center_lambda)*x - sin(-center_lambda)*z;
y = 1.f*y;
z = sin(-center_lambda)*x_copy + cos(-center_lambda)*z;
//Rotation 2: (-center_phi)-rotation on the yz-plane
float y_copy = y;
x = 1.f*x;
y = cos(-center_phi)*y - sin(-center_phi)*z;
z = sin(-center_phi)*y_copy + cos(-center_phi)*z;
u = 2.f*x/(-z+1.f);
v = 2.f*y/(-z+1.f);
r = sqrt(u*u+v*v);
theta = atan2(u,v);
// scaling the complex plane according to scale specified in the interface (relate it to FOV)
r *= scale;
u = -r*sin(theta);
v = r*cos(theta);
x = (4.f*u)/(u*u+v*v+4.f);
y = (4.f*v)/(u*u+v*v+4.f);
z = (u*u+v*v-4.f)/(u*u+v*v+4.f);
lambda = atan2(x,-z)/3.1415;
phi = asin(y)/1.5708;
u = x/(-z);
v = y/(-z);
if (visualization=="Perspective"){
positions[3*(j+i*n)] = u/extent;
positions[3*(j+i*n)+1] = v/extent;
positions[3*(j+i*n)+2] = z;
}
if (visualization=="3D Sphere"){
positions[3*(j+i*n)] = 0.9f*x;
positions[3*(j+i*n)+1] = 0.9f*y;
positions[3*(j+i*n)+2] = z;
}
if (visualization=="Equi-Rectangular"){
positions[3*(j+i*n)] = lambda;
positions[3*(j+i*n)+1] = phi;
positions[3*(j+i*n)+2] = z;
}
}
}
}
void OpenGLCanvas::load_sphere_mesh(float *positions, int m, int n){
float min_lambda = -3.1415f;
float max_lambda = 3.1415f;
float min_phi = -1.5708f;
float max_phi = 1.5708f;
float delta_lambda = (max_lambda-min_lambda)/(1.0*(n-1));
float delta_phi = (max_phi-min_phi)/(1.0*(m-1));
float lambda, phi, x, y, z;
for (int i = 0; i<m; i++){
for (int j = 0; j<n; j++){
lambda = (min_lambda+delta_lambda*j);
phi = (min_phi+delta_phi*i);
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
positions[3*(j+i*n)] = x;
positions[3*(j+i*n)+1] = y;
positions[3*(j+i*n)+2] = z;
}
}
}
float OpenGLCanvas::calculate_extent(float fov_rads){
float lambda, phi, x, y, z, u, v, r, theta;
//calculating the extent of the projection for the given FOV
lambda = fov_rads;
phi = 0.f;
// OpenGL: x is the vertical axes pointg downwards, and y is horizontal axes
y = sin(phi);
x = -sin(lambda)*cos(phi);
z = -cos(lambda)*cos(phi);
u = 2.f*x/(-z+1.f);
v = 2.f*y/(-z+1.f);
r = sqrt(u*u+v*v);
theta = atan2(u,v);
r *= scale;
u = -r*sin(theta);
v = r*cos(theta);
x = (4.f*u)/(u*u+v*v+4.f);
y = (4.f*v)/(u*u+v*v+4.f);
z = (u*u+v*v-4.f)/(u*u+v*v+4.f);
u = x/(-z);
v = y/(-z);
return u;
}
void OpenGLCanvas::define_triangle_indices(unsigned int * indices, int m, int n){
for (int i = 0; i<m-1; i++){
for (int j = 0; j<n-1; j++){
unsigned int index = (j+i*n);
indices[3*(2*(j+i*(n-1)))] = index;
indices[3*(2*(j+i*(n-1)))+1] = index+1;
indices[3*(2*(j+i*(n-1)))+2] = index+n;
indices[3*(2*(j+i*(n-1))+1)] = index+1;
indices[3*(2*(j+i*(n-1))+1)+1] = index+n+1;
indices[3*(2*(j+i*(n-1))+1)+2] = index+n;
}
}
}
int OpenGLCanvas::getTextureSize(const char * const progname, const char * texturePath)
{
struct pam inpam;
pm_init(progname, 0);
FILE * in_file = fopen(texturePath,"r");
if (in_file==NULL){
fprintf(stderr,"ERROR in getTextureSize: unable to open specified file\n");
return -1;
}
#ifdef PAM_STRUCT_SIZE
pnm_readpaminit(in_file,&inpam,PAM_STRUCT_SIZE(tuple_type));
#else
pnm_readpaminit(in_file,&inpam,sizeof(struct pam));
#endif
int size = inpam.width*inpam.height*inpam.depth*inpam.bytes_per_sample;
pm_close(in_file);
//fprintf(stderr,"size=%d\n",size);
return size;
}
void OpenGLCanvas::readTextureBytes(const char * const progname,
const char * texturePath,
unsigned char * textureBytes,
int * outImageWidth,
int * outImageHeight)
{
struct pam inpam;
tuple * tuplerow;
int row;
pm_init(progname, 0);
FILE * in_file = fopen(texturePath, "r");
#ifdef PAM_STRUCT_SIZE
pnm_readpaminit(in_file,&inpam,PAM_STRUCT_SIZE(tuple_type));
#else
pnm_readpaminit(in_file,&inpam,sizeof(struct pam));
#endif
tuplerow = pnm_allocpamrow(&inpam);
for (row = 0; row < inpam.height; row++) {
int column;
pnm_readpamrow(&inpam, tuplerow);
for (column = 0; column < inpam.width; ++column) {
unsigned int plane;
for (plane = 0; plane < inpam.depth; ++plane) {
textureBytes[(inpam.height-row-1)*3*inpam.width+3*column+plane] = tuplerow[column][plane];
}
}
}
pnm_freepamrow(tuplerow);
*outImageWidth = inpam.width;
*outImageHeight = inpam.height;
pm_close(in_file);
}
void OpenGLCanvas::resizeGL(int w, int h){
if(w>h)
glViewport(0,(h-w)/2,w,w);
else
glViewport((w-h)/2,0,h,h);
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
}
char * OpenGLCanvas::textFileRead(char *fn) {
FILE *fp;
char *content = NULL;
int f, count;
f = open(fn, O_RDONLY);
count = lseek(f, 0, SEEK_END);
// close(f);
if (fn != NULL) {
fp = fopen(fn,"rt");
if (fp != NULL) {
if (count > 0) {
content = (char *)malloc(sizeof(char) * (count+1));
count = fread(content,sizeof(char),count,fp);
content[count] = '\0';
}
fclose(fp);
}
}
return content;
}
void OpenGLCanvas::setShaders() {
char *vs,*fs;
#ifdef GLEW_VERSION_1_5
GLenum err=glewInit();
if(err!=GLEW_OK){
fprintf(stderr,"error in GLEW initialization: %s\n",glewGetString(err));
exit(-1);
}
#endif
GLuint v = glCreateShader(GL_VERTEX_SHADER);
GLuint f = glCreateShader(GL_FRAGMENT_SHADER);
// Configure vertex and fragment shader files.
char *vs_file=(char*)malloc(512*sizeof(char*));
char *fs_file=(char*)malloc(512*sizeof(char*));
if(!strcmp(shader_dir,"")){ // if shader_dir was not configured
if(!GET_WORKDIR(vs_file,512)||!GET_WORKDIR(fs_file,512)){
fprintf(stderr,"error reading shader files\n");
exit(-1);
}
strcat(vs_file,"/shaders/");
strcat(fs_file,"/shaders/");
}else{;
strcpy(vs_file,shader_dir);
strcat(vs_file,"/");
strcpy(fs_file,shader_dir);
strcat(fs_file,"/");
}
strcat(vs_file,VERT_SHADER_FILE);
fprintf(stderr,"vs_file=%s\nfs_file=%s\n",vs_file,fs_file);
struct stat vs_testbuf,fs_testbuf;
if(stat(vs_file,&vs_testbuf)||stat(fs_file,&fs_testbuf)){
fprintf(stderr,"a shader file does not exist!\n");
free(vs_file);
free(fs_file);
exit(-1);
}
vs=textFileRead(vs_file);
fs=textFileRead(fs_file);
const char * vv = vs;
const char * ff = fs;
glShaderSource(v, 1, &vv,NULL);
glShaderSource(f, 1, &ff,NULL);
free(vs);free(fs);
glCompileShader(v);
glCompileShader(f);
GLuint p = glCreateProgram();
glAttachShader(p,v);
glAttachShader(p,f);
glLinkProgram(p);
glUseProgram(p);
}
void OpenGLCanvas::paintGL(){
float fov_rads = (fov/180.f)*1.5708f;
// // changing scale to generate the figures for the paper (remove it after)
// scale = 0.8;
// defining transformation parameters (that will be passed to the vertex shader)
float extent = calculate_extent(fov_rads);
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
if (visualization=="Perspective") vis_mode=1.0;
else if (visualization=="3D Sphere") vis_mode=2.0;
else if (visualization=="Equi-Rectangular") vis_mode=3.0;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 2.0/extent, 0.0, 2.0/scale, 0.0, -2.0/vis_mode);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glOrtho(0.0, 2.0/center_lambda, 0.0, 2.0/center_phi, -1.0, 1.0);
// drawing the mesh
glClearColor(1.0, 1.0, 1.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor3f(1, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, verticesPositions);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, textureCoordinates);
glDrawElements(GL_TRIANGLES, numberOfIndices, GL_UNSIGNED_INT, triangleIndices);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
time_frames++;
// if (time_frames > 0) {
double dt = time_time.elapsed();
// if (dt > 0.5) {
time_fps = time_frames/dt;
time_frames = 0;
time_time.reset();
emit fps(QString("%1 fps").arg((int)(time_fps+0.5)));
printf("fps = %d ", (int)(time_fps+0.5));
// }
// }
}